翻訳と辞書
Words near each other
・ Fannin County, Georgia
・ Fannin County, Texas
・ Fannin Formation
・ Fannin Innovation Studio
・ Fannin Range
・ Fannin sheep
・ Fannin South (METRORail station)
・ Fannin, Kentucky
・ Fannin, Mississippi
・ Fannin, Texas
・ Fannindel Independent School District
・ Fanning
・ Fanning & Coles
・ Fanning (firearms)
・ Fanning (surname)
Fanning friction factor
・ Fanning Raid
・ Fanning Ridge
・ Fanning Springs State Park
・ Fanning Springs, Florida
・ Fanning, Kansas
・ Fanning, Missouri
・ Fanningstown
・ Fanninia
・ Fanniomyces
・ Fanno Creek
・ Fanno flow
・ Fannrem
・ Fannrem concentration camp
・ Fanntasy


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Fanning friction factor : ウィキペディア英語版
Fanning friction factor

The Fanning friction factor, named after John Thomas Fanning (1837–1911), is a dimensionless number used in fluid flow calculations. It is related to the shear stress at the wall as:
:
\tau = \frac

where:
*\tau is the shear stress at the wall
*f is the Fanning friction factor of the pipe
*v is the fluid velocity in the pipe
*\rho is the density of the fluid
The wall shear stress can, in turn, be related to the pressure loss by multiplying the wall shear stress by the wall area (2 \pi R L for a pipe) and dividing by the cross-sectional flow area ( \pi R^2 for a pipe). Thus f = \frac \frac
The friction head can be related to the pressure loss due to friction by dividing the pressure loss by the product of the acceleration due to gravity and the density of the fluid. Accordingly, the relationship between the friction head and the Fanning friction factor is:
:
h_f = \frac

where:
*h_f is the friction loss (in head) of the pipe.
*f is the Fanning friction factor of the pipe.
*v is the fluid velocity in the pipe.
*L is the length of pipe.
*g is the local acceleration of gravity.
*D is the pipe diameter.
== Fanning friction factor formula ==

This friction factor is one-fourth of the Darcy friction factor, so attention must be paid to note which one of these is meant in the "friction factor" chart or equation consulted. Of the two, the Fanning friction factor is the more commonly used by chemical engineers and those following the British convention.
The formulae below may be used to obtain the Fanning friction factor for common applications.
The friction factor for laminar flow in round tubes is often taken to be:
f= \frac
where Re is the Reynolds number of the flow.
For a square channel the value used is:
f = \frac
The Darcy friction factor can also be expressed as〔Yunus, Cengel. Heat and Mass Transfer. New York: Mc Graw Hull, 2007.〕
f = \frac
where:
* \tau_w is the shear stress at the wall
* \rho is the density of the fluid
* V_ is the average fluid velocity
For the turbulent flow regime, the relationship between the Fanning friction factor and the Reynolds number is more complex and is governed by the Colebrook equation 〔Colebrook, C.F. and White, C.M. 1937, "Experiments with Fluid friction roughened pipes.", ''Proc. R.Soc.(A)'', 161〕 which is implicit in f:
:= -4.0 \log_ \left(\frac} + } } } \right) , \text
Various explicit approximations of the related Darcy friction factor have been developed for turbulent flow.
Stuart W. Churchill〔Churchill, S.W., 1977, "Friction factor equation spans all fluid-flow regimes", ''Chem.
Eng.'', 91〕 developed a formula that covers the friction factor for both laminar and turbulent flow. This was originally produced to describe the Moody chart, which plots the Darcy-Weisbach Friction factor against Reynolds number. The Darcy Weisbach Formula f_D is 4 times the Fanning friction factor f and so a factor of \frac has been applied to produce the formula given below.
* Re, Reynolds number (unitless);
* ε, roughness of the inner surface of the pipe (dimension of length);
* ''D'', inner pipe diameter;
: f = 2 \left(
\left( \frac \right) ^
+ \left( A+B \right) ^
\right) ^ }
:A = \left( 2.457 \ln \left( \left( \left( \frac \right) ^ + 0.27 \frac \right)^ \right) \right) ^
:B = \left( \frac \right) ^

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Fanning friction factor」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.